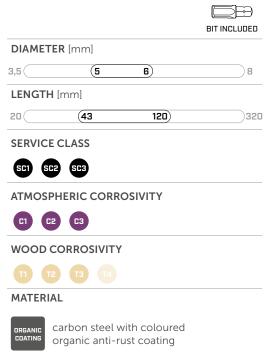
KKT COLOR

CONE-SHAPED CONCEALED HEAD SCREW

ORGANIC COLOURED COATING

Carbon steel version with coloured anti-rust coating (brown, grey, green, sand and black) for outdoor use in service class 3 on non acid timbers (T3).

COUNTER THREAD


The inverse (left-hand) under-head thread guarantees excellent grip. Small conical head to ensure it is hidden in the timber.

TRIANGULAR BODY

The three-lobed thread makes it possible to cut the wood grain during screwing. Exceptional timber pull-through.

FIELDS OF USE

Outdoor use.

Wooden boards with density of < 780 kg/m^3 (without pre-drill) and < 880 kg/m^3 (with pre-drill). WPC boards (with pre-drill).

CODES AND DIMENSIONS

KKT BROWN COLOUR

$d_{_1}$	CODE	L	b	Α	pcs
[mm]		[mm]	[mm]	[mm]	
	KKTM540	43	25	16	200
_	KKTM550	53	35	18	200
5 TX 20	KKTM560	60	40	20	200
17,20	KKTM570	70	50	25	100
	KKTM580	80	53	30	100
	KKTM660	60	40	20	100
6	KKTM680	80	50	30	100
TX 25	KKTM6100	100	50	50	100
	KKTM6120	120	60	60	100

KKT GREY COLOUR

d ₁	CODE	L	b	Α	pcs
[mm]		[mm]	[mm]	[mm]	
	KKTG540	43	25	16	200
_	KKTG550	53	35	18	200
5 TX 20	KKTG560	60	40	20	200
17.20	KKTG570	70	50	25	100
	KKTG580	80	53	30	100

KKT GREEN COLOUR

	$d_{_1}$	CODE	L	b	Α	pcs
	[mm]		[mm]	[mm]	[mm]	
	-	KKTV550	53	35	18	200
	5 TX 20	KKTV560	60	40	20	200
1 X 20	KKTV570	70	50	25	100	

KKT SAND COLOUR

$d_{_1}$	CODE	L	b	Α	pcs
[mm]		[mm]	[mm]	[mm]	
-	KKTS550	53	35	18	200
5 TX 20	KKTS560	60	40	20	200
1 / 20	KKTS570	70	50	25	100

KKT BLACK COLOUR

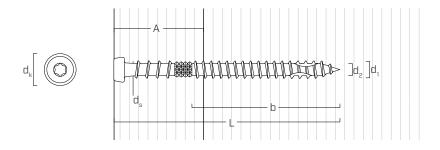
d ₁	CODE	L	b	Α	pcs
[mm]		[mm]	[mm]	[mm]	
-	KKTN540(*)	43	36	16	200
5 TX 20	KKTN550	53	35	18	200
1 \ 20	KKTN560	60	40	20	200

^(*) Full threaded screw.

■ KKT COLOR STRIP

Bound version available for fast and accurate installation. Ideal for large projects.

For information on screwdriver and additional products see page 403.



KKT BROWN COLOUR

d ₁	CODE	L	b	Α	pcs
[mm]		[mm]	[mm]	[mm]	
5	KKTMSTRIP540	43	25	16	800
TX 20	KKTMSTRIP550	53	35	18	800

Compatible with KMR 3371 loaders, code HH3371 with appropriate TX20 bit (code TX20L177)

■ GEOMETRY AND MECHANICAL CHARACTERISTICS

GEOMETRY

Nominal diameter	d_1	[mm]	5,1	6
Head diameter	d_K	[mm]	6,75	7,75
Thread diameter	d_2	[mm]	3,40	3,90
Shank diameter	d_S	[mm]	4,05	4,40
Pre-drilling hole diameter ⁽¹⁾	d_V	[mm]	3,0 - 4,0	4,0 - 5,0

 $^{^{(1)}}$ For high density materials, pre-drilled holes are recommended based on the wood specie.

CHARACTERISTIC MECHANICAL PARAMETERS

Nominal diameter	d_1	[mm]	5,1	6
Tensile strength	$f_{tens,k}$	[kN]	9,6	14,5
Yield moment	$M_{y,k}$	[Nm]	8,4	9,9
Withdrawal resistance parameter	f _{ax,k}	[N/mm ²]	14,7	14,7
Associated density	ρ_{a}	[kg/m³]	400	400
Head-pull-through parameter	$f_{head,k}$	[N/mm ²]	68,8	20,1
Associated density	ρ _a	[kg/m³]	730	350

MINIMUM DISTANCES FOR SHEAR LOADS

screws inserted WITHOUT pre-drilled hole

 $\rho_k \leq 420 \; kg/m^3$

α=0°

\xrightarrow{F}		α=90°
-------------------	--	-------

d	[mm]		5	6
a ₁	[mm]	12·d	60	72
a ₂	[mm]	5·d	25	30
$a_{3,t}$	[mm]	15·d	75	90
a _{3,c}	[mm]	10 ⋅d	50	60
$a_{4,t}$	[mm]	5·d	25	30
a _{4,c}	[mm]	5·d	25	30

d	[mm]		5	6
a ₁	[mm]	5·d	25	30
a ₂	[mm]	5·d	25	30
$a_{3,t}$	[mm]	10·d	50	60
$a_{3,c}$	[mm]	10 ⋅d	50	60
$a_{4,t}$	[mm]	10·d	50	60
$a_{4,c}$	[mm]	5·d	25	30

d = screw diameter

screws inserted WITHOUT pre-drilled hole

 $420 \text{ kg/m}^3 < \rho_k \le 500 \text{ kg/m}^3$

α=90°

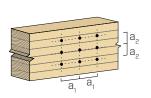
d	[mm]		5	6
a ₁	[mm]	15·d	75	90
a ₂	[mm]	7⋅d	35	42
$a_{3,t}$	[mm]	20·d	100	120
a _{3,c}	[mm]	15 ⋅d	75	90
$a_{4,t}$	[mm]	7⋅d	35	42
a _{4,c}	[mm]	7∙d	35	42

d	[mm]		5	6
a ₁	[mm]	7∙d	35	42
a ₂	[mm]	7⋅d	35	42
$a_{3,t}$	[mm]	15·d	75	90
a _{3,c}	[mm]	15·d	75	90
$a_{4,t}$	[mm]	12·d	60	72
a _{4,c}	[mm]	7∙d	35	42

d = screw diameter

screws inserted WITH pre-drilled hole

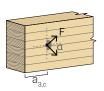
ι=0°



α=90°

d	[mm]		5	6
a ₁	[mm]	5·d	25	30
a ₂	[mm]	3·d	15	18
٥,٠	[mm]	12·d	60	72
a _{3,c}	[mm]	7⋅d	35	42
$a_{4,t}$	[mm]	3·d	15	18
a _{4,c}	[mm]	3·d	15	18

d	[mm]		5	6
a ₁	[mm]	4·d	20	24
a ₂	[mm]	4·d	20	24
٥,٠	[mm]	7·d	35	42
a _{3,c}	[mm]	7⋅d	35	42
$a_{4,t}$	[mm]	7⋅d	35	42
$a_{4,c}$	[mm]	3·d	15	18


d = screw diameter

stressed end -90° < a < 90°

unloaded end 90° < α < 270°

stressed edge 0° < a < 180°

unload edge 180° < α < 360°

NOTES

- • The minimum distances are compliant with EN 1995:2014, according to ETA-11/0030, considering a calculation diameter of d = screw diameter.
- The minimum spacing for all steel-to-timber connections (a $_1$, a $_2$) can be multiplied by a coefficient of 0,7.
- The minimum spacing for all panel-to-timber connections (a $_1$, a $_2$) can be multiplied by a coefficient of 0,85.

 $[\]alpha$ = load-to-grain angle

 $[\]alpha$ = load-to-grain angle

 $[\]alpha$ = load-to-grain angle

STRUCTURAL VALUES

KKT			SHE	AR	TENSION			
geometry				timber-to-timber without timber-to-timber pre-drilling hole with pre-drilling h		thread withdrawal	head pull-through including upper thread withdrawal	
		A						
d_1	L	b	Α	R _{V,k}	$R_{V,k}$	R _{ax,k}	R _{head,k}	
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[kN]	[kN]	
	43	25	16	1,08	1,43	1,91	1,05	
	53	35	18	1,22	1,48	2,67	1,05	
5	60	40	20	1,25	1,53	3,06	1,05	
	70	50	25	1,34	1,68	3,82	1,05	
	80	53	30	1,45	1,84	4,05	1,05	
	60	40	20	1,46	1,80	3,67	1,40	
6	80	50	30	1,67	2,16	4,59	1,40	
0	100	50	50	1,93	2,27	4,59	1,40	
	120	60	60	1,93	2,27	5,50	1,40	

	KKTN54	10		SHI	TENSION			
geometry			steel-to-timber thin plate		steel-to-timber intermediate plate		thread withdrawal	
			□ □ S _{PLATE}		JS _{PLATE}			
d_1	L	b	S _{PLATE}	$R_{V,k}$	S _{PLATE}	$R_{V,k}$	$R_{ax,k}$	
[mm]	[mm]	[mm]	[mm]	[kN]	[mm]	[kN]	[kN]	
5	40	36	2	1,32	3	1,50	2,75	

GENERAL PRINCIPLES

- Characteristic values according to EN 1995:2014.
- Design values can be obtained from characteristic values as follows:

$$R_{d} = \frac{R_{k} \cdot K_{mod}}{\gamma_{M}}$$

The coefficients $\gamma_{\mbox{\scriptsize M}}$ and $k_{\mbox{\scriptsize mod}}$ should be taken according to the current regulations used for the calculation.

- Mechanical strength values and screw geometry comply with CE marking according to EN 14592.
- Dimensioning and verification of timber elements and steel plates must be carried out separately.
- The screws must be positioned in accordance with the minimum distances.
- The KKT screws with twin thread are mainly used for wood-wood joints.
- The KKTN540 fully threaded screw is mainly used for steel plates (e.g. FLAT patio system).

- The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.
- The axial resistance to head pull-through was calculated using timber elements also considering the underhead thread.
- A characteristic head-pull-through parameter equal to 20 N/mm² with associated density $\rho_a=350~\text{kg/m}^3$ is considered in the calculation phase for the Ø5 diameter.
- The characteristic shear strengths are evaluated considering the case of thin plate (S_{PLATE} \leq 0,5 d₁) and intermediate plate (0,5 d₁ < S_{PLATE} < d₁).
- In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.
- For the calculation process a timber characteristic density ρ_k = 420 kg/m 3 has been considered.